\begin{tabbing} (\=(((((Symmetry) \+ \\[0ex]CollapseTHEN (HypSubst ({-}1) 0))$\cdot$) \\[0ex]CollapseTHEN ((Auto\_aux (first\_nat \-\\[0ex]1\=:n) ((first\_nat 1:n),(first\_nat 3:n)) (first\_tok :t) inil\_term)))$\cdot$) \+ \\[0ex]CollapseTHEN ((( \-\\[0ex]B\=ackThruLemma `append\_firstn\_lastn`) \+ \\[0ex]CollapseTHEN ((Auto\_aux (first\_nat 1:n \-\\[0ex]) ((first\_nat 2:n),(first\_nat 3:n)) (first\_tok :t) inil\_term)))$\cdot$))$\cdot$ \end{tabbing}